CERTIFICATES OF COMPETENCY IN THE MERCHANT NAVY MARINE ENGINEER OFFICER

> EXAMINATIONS ADMINISTERED BY THE SCOTTISH QUALIFICATIONS AUTHORITY ON BEHALF OF THE MARITIME AND COASTGUARD AGENCY

STCW 95 MANAGEMENT ENGINEER REG. III/2 (UNLIMITED)

Applied Heat October 2018 Solution

Prepared By
Yogesh R. Ulhe

Note:-
This solution is for private circulation only. Not for sale.
Every effort has been made to see that there are no errors (typographical or otherwise) in the material presented. However, it is still possible that there are a few errors (serious or otherwise).We would be thankful to the reader, if they are brought to my attention at the following e-mail address: ulheyogesh@gmail.com

Q. 1

A perfect gas is heated at constant pressure and then expands reversibly according to the law $\mathbf{P V}^{1.4}=$ constant.
The initial pressure and temperature are 15 bar and $600^{\circ} \mathrm{C}$ respectively.
The final pressure is $\mathbf{1 . 0}$ bar and the final volume is $\mathbf{1 2}$ times the initial volume.
(a) Sketch the process on a Temperature-specific entropy diagram. (2)
(b) Calculate EACH of the following:
(i) the final temperature; (2)
(ii) the temperature after the heating process; (2)
(iii) the specific work transfer; (4)
(iv) the net change in specific entropy for the polytropic process, (6)

Note: for the gas $c_{v}=5.179 \mathrm{~kJ} / \mathrm{kgK}$ and $\mathrm{R}=2.078 \mathrm{~kJ} / \mathrm{kgK}$

Solution:

(a)

(b)

$$
\begin{aligned}
& P_{1}=15 \mathrm{bar}=1500 \mathrm{kN} / \mathrm{m}^{2}=P_{2} \\
& T_{1}=600^{\circ} \mathrm{C}=873 \mathrm{~K} \\
& P_{3}=1 \mathrm{bar}=100 \mathrm{kN} / \mathrm{m}^{2} \\
& V_{3}=12 V_{1} \\
& c_{p}=5.179 \mathrm{~kJ} / \mathrm{kgK}, \quad R=2.078 \mathrm{~kJ} / \mathrm{kgK}
\end{aligned}
$$

For process 2-3

$$
\begin{aligned}
& P_{2} V_{2}^{n}=P_{3} V_{3}^{n} \\
& \Rightarrow\left(\frac{V_{2}}{V_{3}}\right)^{n}=\frac{P_{3}}{P_{2}} \\
& \Rightarrow \frac{V_{2}}{V_{3}}=\left(\frac{P_{3}}{P_{2}}\right)^{1 / n}=\left(\frac{100}{1500}\right)^{1 / 1.4}=0.1445
\end{aligned}
$$

$\Rightarrow V_{2}=0.1445 V_{3}=0.1445 \times 12 V_{1}=1.734 V_{1} \quad\left\{\because V_{3}=12 V_{1}\right.$
$\Rightarrow \frac{V_{2}}{V_{1}}=1.734$

For process 1-2

$$
\begin{aligned}
& \frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} \\
& \Rightarrow T_{2}=\frac{V_{2}}{V_{1}} \times T_{1}=1.734 \times 873=1513.782 \mathrm{~K}
\end{aligned}
$$

For process 2-3

$$
\begin{aligned}
& \frac{T_{3}}{T_{2}}=\left(\frac{V_{2}}{V_{3}}\right)^{n-1} \\
& \Rightarrow T_{3}=T_{2}\left(\frac{V_{2}}{V_{3}}\right)^{n-1}=1513.782 \times 0.1445^{0.4}=698.25 \mathrm{~K}
\end{aligned}
$$

(b)(i)

The final temperature $=T_{3}=698.25 \mathrm{~K}$
(b)(ii)

The temperature after the heating process $=T_{2}=1513.782 \mathrm{~K}$
(b)(iii)

$$
\begin{aligned}
& W_{\text {total }}=W_{1-2}+W_{2-3} \\
& W_{1-2}=m R\left(T_{2}-T_{1}\right)=1 \times 2.078 \times(1513.782-873)=1331.54 \mathrm{~kJ} / \mathrm{kg} \\
& W_{2-3}=\frac{m R\left(T_{2}-T_{3}\right)}{n-1}=\frac{1 \times 2.078 \times(1513.782-698.25)}{0.4}=4236.69 \mathrm{~kJ} / \mathrm{kg} \\
& W_{\text {total }}=1331.54+4236.69=5568.23 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Therefore, the specific work transfer is $5568.23 \mathrm{~kJ} / \mathrm{kg}$.
(b)(iv)

$$
\begin{aligned}
& \Delta s_{2-3}=c_{p} \ln \left(\frac{T_{3}}{T_{2}}\right)-R \ln \left(\frac{P_{3}}{P_{2}}\right)=5.179 \ln \left(\frac{698.25}{1513.782}\right)-2.078 \ln \left(\frac{100}{1500}\right) \\
& \Rightarrow \Delta s_{2-3}=1.6198 \mathrm{~kJ} / \mathrm{kgK}
\end{aligned}
$$

Therefore, the net change in specific entropy for polytropic process is $1.6198 \mathrm{~kJ} / \mathrm{kgK}$.

Q. 2

In the open cycle gas turbine plant shown in Fig Q2, the HP turbine drives the compressor and the LP turbine drives the load.
Air enters the compressor at a pressure and temperature of 1.05 bar and $15^{\circ} \mathrm{C}$ respectively. The combustion products enter the HP turbine at a pressure of $\mathbf{9 . 4 5}$ bar and temperature of $1027^{\circ} \mathrm{C}$.
The gas entering the $\mathbf{L P}$ turbine is at a pressure of $\mathbf{3 . 2 3}$ bar and leaves at a pressure of $\mathbf{1 . 0 5}$ bar.
The isentropic efficiency of the compressor is 0.84 .
The isentropic efficiency of LP turbine is 0.86 .
The mass flow of fuel and all system losses may be ignored.
(a) Sketch the cycle on a Temperature-specific entropy diagram. (3)
(b) Calculate EACH of the following:
(i) the compressor specific work input;
(ii) the specific net work output; (6)
(iii) the cycle thermal efficiency. (3)

Note: for air $\gamma=1.4, c_{p}=1.005 \mathrm{~kJ} / \mathrm{kgK}$
for the combustion products $\gamma=1.33, \mathrm{c}_{\mathrm{p}}=1.15 \mathrm{~kJ} / \mathrm{kgK}$

Fig Q2
Solution:
(a)
P.T.O.

(b)

$$
P_{\text {low }}=P_{1}=P_{5}=1.05 \mathrm{bar}=105 \mathrm{kN} / \mathrm{m}^{2}
$$

$$
T_{1}=15^{\circ} \mathrm{C}=288 \mathrm{~K}
$$

$$
P_{\text {high }}=P_{2}=P_{3}=9.45 \mathrm{bar}=945 \mathrm{kN} / \mathrm{m}^{2}
$$

$$
T_{3}=1027^{\circ} \mathrm{C}=1300 \mathrm{~K}
$$

$$
P_{\text {int }}=P_{4}=3.23 \mathrm{bar}=323 \mathrm{kN} / \mathrm{m}^{2}
$$

$$
\eta_{C}=0.84, \quad \eta_{L P T}=0.86
$$

$$
\gamma_{\text {air }}=1.4, \quad c_{p \text { air }}=1.005 \mathrm{~kJ} / \mathrm{kgK}
$$

$$
\gamma_{g a s}=1.33, \quad c_{p g a s}=1.15 \mathrm{~kJ} / \mathrm{kgK}
$$

- marinemasterindia@gmail.com
www.marinemasterindia.com

$$
\begin{aligned}
& T_{2 i}=T_{1}\left(\frac{P_{2}}{P_{1}}\right)^{\frac{\gamma-1}{\gamma}}=288 \times\left(\frac{945}{105}\right)^{\frac{0.4}{1.4}}=539.55 \mathrm{~K} \\
& \eta_{C}=\frac{T_{2 i}-T_{1}}{T_{2}-T_{1}} \\
& \Rightarrow T_{2}=\frac{T_{2 i}-T_{1}}{\eta_{C}}+T_{1}=\frac{539.55-288}{0.84}+288=587.464 \mathrm{~K}
\end{aligned}
$$

(b)(i)

$$
W_{c}=c_{p \text { air }}\left(T_{2}-T_{1}\right)=1.005 \times(587.464-288)=300.96 \mathrm{~kJ} / \mathrm{kg}
$$

Therefore, the compressor specific work input is $300.96 \mathrm{~kJ} / \mathrm{kg}$.
(b)(ii)

$$
\begin{aligned}
& W_{c}=W_{H P T} \\
& \Rightarrow 300.96=c_{p g a s}\left(T_{3}-T_{4}\right) \\
& \Rightarrow 300.96=1.15\left(1300-T_{4}\right) \\
& \Rightarrow T_{4}=1300-\frac{300.96}{1.15}=1038.295 \mathrm{~K} \\
& T_{5 i}=T_{4}\left(\frac{P_{5}}{P_{4}}\right)^{\frac{\gamma-1}{\gamma}}=1038.295 \times\left(\frac{105}{323}\right)^{\frac{0.33}{1.33}}=785.66 \mathrm{~K} \\
& \begin{array}{l}
\eta_{L P T}=\frac{T_{4}-T_{5}}{T_{4}-T_{5 i}} \\
\Rightarrow T_{5}=T_{4}-\eta_{L P T}\left(T_{4}-T_{5 i}\right)=1038.295-0.86(1038.295-785.66)=821.03 \mathrm{~K} \\
W_{\text {net,out }}=W_{L P T}+W_{H P T}-W_{C}=W_{L P T}=c_{p \text { gas }}\left(T_{4}-T_{5}\right) \\
\quad=1.15(1038.295-821.03)=249.85 \mathrm{~kJ} / \mathrm{kg}
\end{array}
\end{aligned}
$$

Therefore, the specific net work output is $249.85 \mathrm{~kJ} / \mathrm{kg}$.
(b)(iii)
$\eta_{t h}=\frac{W_{\text {net }, \text { out }}}{Q_{\text {add }}}=\frac{W_{\text {net }, \text { out }}}{c_{\text {p gas }}\left(T_{3}-T_{2}\right)}=\frac{249.85}{1.15(1300-587.464)}=0.3049=30.49 \%$
Therefore, the cycle thermal efficiency is 30.49%.

Q. 5

In a $\mathbf{5 0 \%}$ reaction turbine stage, dry saturated steam at pressure of 3 bar leaves the fixed blades with a velocity of $\mathbf{1 2 0} \mathbf{~ m} / \mathrm{s}$.
The moving blade exit angle is 25° and the mean blade height is $\mathbf{4 0} \mathbf{~ m m}$.
The axial velocity of steam is 75% of the blade velocity at the mean blade radius.
The mass flow of steam through the stage is $7200 \mathrm{~kg} / \mathrm{hr}$.
(a) Sketch the stage velocity diagram indicating the velocities and relationships.
(b) Calculate EACH of the following:
(i) the rotor speed in rev/min;
(ii) the diagram power; (3)
(iii) the stage enthalpy drop. (3)

Solution:
(a)

(b)

$$
\begin{aligned}
& P=3 \text { bar }, \quad x=1 \\
& C_{i}=120 \mathrm{~m} / \mathrm{s}, \quad \beta_{o}=25^{\circ}, \quad h=40 \mathrm{~mm}=0.04 \mathrm{~m}, \quad C_{a}=0.75 \times u, \\
& \dot{m}=7200 \mathrm{~kg} / \mathrm{hr}=2 \mathrm{~kg} / \mathrm{s} \\
& v=v_{g} @ 3 \mathrm{bar}=0.6057 \mathrm{~m}^{3} / \mathrm{kg}
\end{aligned}
$$

Due to symmetry in combined velocity diagram, $\alpha_{i}=\beta_{o}=25^{\circ}$

$$
\begin{aligned}
& C_{a}=C_{i} \sin \alpha_{i}=120 \times \sin 25=50.714 \mathrm{~m} / \mathrm{s} \\
& C_{w i}=C_{i} \cos \alpha_{i}=120 \times \cos 25=108.76 \mathrm{~m} / \mathrm{s} \\
& C_{a}=0.75 \times u \quad \Rightarrow \quad u=\frac{C_{a}}{0.75}=\frac{50.714}{0.75}=67.618 \mathrm{~m} / \mathrm{s} \\
& \dot{m}=\frac{\pi D h C_{a}}{v}
\end{aligned}
$$

$\Rightarrow \quad D=\frac{m v}{\pi C_{a} h}=\frac{2 \times 0.6057}{\pi \times 50.714 \times 0.04}=0.19 \mathrm{~m}$
(b)(i)
$u=\frac{\pi D N}{60} \Rightarrow N=\frac{u \times 60}{\pi D}=\frac{67.618 \times 60}{\pi \times 0.19}=6796.88 \mathrm{rev} / \mathrm{min}$
Therefore, the rotor speed is $6796.88 \mathrm{rev} / \mathrm{min}$.
(b)(ii)

Diagram power $=\dot{m} \times u \times \Delta C_{w}=\dot{m} \times u \times\left(2 C_{w i}-u\right)$

$$
=2 \times 67.618 \times(2 \times 108.76-67.618)=20272.14 W
$$

Therefore, the diagram power is 20272.14 W .
(b)(iii)
$x=C_{w i}-u=108.76-67.618=41.142 \mathrm{~m} / \mathrm{s}$
$C_{o}=C_{r i}=\sqrt{x^{2}+C_{a}{ }^{2}}=\sqrt{41.142^{2}+50.714^{2}}=65.3 \mathrm{~m} / \mathrm{s}$
$C_{r o}=C_{i}=120 \mathrm{~m} / \mathrm{s}$
Stage enthalpy drop $=\frac{C_{i}{ }^{2}-C_{o}{ }^{2}}{2}+\frac{C_{r o}{ }^{2}-C_{r i}{ }^{2}}{2}=\frac{120^{2}-65.3^{2}}{2}+\frac{120^{2}-65.3^{2}}{2}$

$$
=10135.91 \mathrm{~J} / \mathrm{kg}
$$

Therefore, the stage enthalpy drop is $10135.91 \mathrm{~J} / \mathrm{kg}$.
Q. 6

A vapour compression refrigeration plant uses R134a.
The refrigerant enters the compressor at a pressure and temperature of 1.6393 bar and $-5^{\circ} \mathrm{C}$ respectively and undergoes isentropic compression to $\mathbf{1 3 . 1 7 4}$ bar.
The liquid refrigerant leaves the condenser at a temperature of $35^{\circ} \mathrm{C}$.
The cooling load is 250 kW .
(a) Sketch the cycle on a pressure-specific enthalpy diagram indicating areas of heat and work transfer. (2)
(b) Sketch the cycle on a Temperature-specific entropy diagram indicating areas of superheat and sub cooling. (2)
(c) Calculate EACH of the following:
(i) the mass of dry saturated vapour entering the evaporator;
(ii) the compressor power; (4)
(iii) the coefficient of performance; (2)
(iv) the Carnot coefficient of performance between the same temperature limits.

Solution:

(a)

(b)

(c)

Refrigerant $=R 134 a$
$P_{1}=1.6393 \mathrm{bar}, \quad T_{1}=-5^{\circ} \mathrm{C}, \quad P_{2}=13.174 \mathrm{bar}$
$s_{1}=s_{2} \quad\{\because$ Isentropic compression $\}$
Cooling load $=250 \mathrm{~kW}$

$$
\begin{aligned}
& T_{\text {sat }} @ P_{1}=-15^{\circ} \mathrm{C}, \quad T_{\text {sat }} @ P_{2}=50^{\circ} \mathrm{C} \\
& (\text { Superheat })_{1}=T_{1}-T_{\text {sat }} @ P_{1}=-5-(-15)=10 \mathrm{~K} \\
& h_{1}=h @ P_{1} \& 10 \mathrm{~K} \text { superheat }=397.86 \mathrm{~kJ} / \mathrm{kg} \\
& s_{1}=s @ P_{1} \& 10 \mathrm{~K} \text { superheat }=1.7683 \mathrm{~kJ} / \mathrm{kgK} \\
& s_{2}=s_{1}=1.7683 \mathrm{~kJ} / \mathrm{kgK}
\end{aligned}
$$

$$
\text { At } P_{2}=13.174 \mathrm{bar}
$$

$\mathbf{s}(\mathbf{k J} / \mathbf{k g K})$	$\mathbf{h}(\mathbf{k J})$
1.7438	435.44
1.7683	$\mathrm{~h}_{2}$
1.7775	446.84

$$
\begin{aligned}
& h_{2}=435.44+(1.7683-1.7438) \times \frac{446.84-435.44}{1.7775-1.7438}=443.728 \mathrm{~kJ} / \mathrm{kg} \\
& h_{4}=h_{3}=h_{f} @ T_{3}=248.98 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Cooling load $=\dot{m}\left(h_{1}-h_{4}\right)$
$\Rightarrow \quad \dot{m}=\frac{\text { Cooling load }}{\left(h_{1}-h_{4}\right)}=\frac{250}{397.86-248.98}=1.679 \mathrm{~kg} / \mathrm{s}$
$h_{f} @ P_{1}=180.16 \mathrm{~kJ} / \mathrm{kg}, \quad h_{g} @ P_{1}=389.49 \mathrm{~kJ} / \mathrm{kg}$
$x_{4}=\frac{h_{4}-h_{f}}{h_{g}-h_{f}}=\frac{248.98-180.16}{389.49-180.16}=0.3287$
(c)(i)

Mass of dry saturated vapour entering the evaporator $=x_{4} \times \dot{m}$

$$
=0.3287 \times 1.679=0.5518 \mathrm{~kg} / \mathrm{s}
$$

Therefore, the mass of dry saturated vapour entering the evaporator is $0.5518 \mathrm{~kg} / \mathrm{s}$.
(c)(ii)

Compressor power $=\dot{m}\left(h_{2}-h_{1}\right)=1.679(443.728-397.86)=77.0123 \mathrm{~kW}$
Therefore, the compressor power is 77.0123 kW .
(c)(iii)

$$
\text { COP }=\frac{\text { Cooling load }}{\text { Compressor power }}=\frac{250}{77.0123}=3.246
$$

Therefore, the coefficient of performance is 3.246 .
(c)(iv)
$T_{L}=-15^{\circ} \mathrm{C}=258 \mathrm{~K}$
$T_{H}=50^{\circ} \mathrm{C}=323 \mathrm{~K}$
$\operatorname{COP}_{\text {Carnot }}=\frac{T_{L}}{T_{H}-T_{L}}=\frac{258}{323-258}=3.97$
Therefore, the Carnot coefficient of performance is 3.97.

Q. 7

A steel pipe has an internal diameter of 100 mm and a wall thickness of $\mathbf{8 ~ m m}$.
It carries wet steam a pressure of $\mathbf{7}$ bar and is carried with two layers of insulation, each 10 mm thick.
The outer layer of insulation becomes contaminated and is removed.
The surrounding air temperature remains constant at $20^{\circ} \mathrm{C}$.
Calculate EACH of the following:
(a) the heat loss per metre length of pipe when covered in two layers of insulation;
(b) the percentage increase in heat loss when the outer layer is removed;
(c) the percentage increase in outer surface temperature. (5)

Note: the heat transfer coefficient of the inner surface may be ignored. the thermal conductivity of steel $=52 \mathrm{~W} / \mathrm{mK}$ the thermal conductivity of the inner insulation $=0.045 \mathrm{~W} / \mathrm{mK}$ the thermal conductivity of the outer insulation $=0.13 \mathrm{~W} / \mathrm{mK}$ the heat transfer coefficient of the outer surface $=15 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$

Solution:

(a)

$r_{1}=50 \mathrm{~mm}=0.05 \mathrm{~m}$
$r_{2}=50+8=58 \mathrm{~mm}=0.058 \mathrm{~m}$
$r_{3}=58+10=68 \mathrm{~mm}=0.068 \mathrm{~m}$

$$
r_{4}=68+10=78 \mathrm{~mm}=0.078 \mathrm{~m}
$$

Wet steam in pipe at $P=7 \mathrm{bar}$

$$
\begin{aligned}
& \therefore T_{\text {inner }}=T_{\text {sat }} @ 7 \text { bar }=165^{\circ} \mathrm{C} \\
& T_{\text {outer }}=20^{\circ} \mathrm{C} \\
& k_{\text {st }}=52 \mathrm{~W} / \mathrm{mK}, \quad\left(k_{\text {ins }}\right)_{\text {inner }}=0.045 \mathrm{~W} / \mathrm{mK}, \quad\left(k_{\text {ins }}\right)_{\text {outer }}=0.13 \mathrm{~W} / \mathrm{mK} \\
& h_{\text {outer }}=15 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}, \quad l=1 \mathrm{~m} \\
& R_{\text {st }}=\frac{1}{2 \pi k_{\text {st }} l} \ln \frac{r_{2}}{r_{1}}=\frac{1}{2 \pi \times 52 \times 1} \times \ln \frac{0.058}{0.05}=4.542 \times 10^{-4} \mathrm{~K} / \mathrm{W} \\
& \left(R_{\text {ins }}\right)_{\text {inner }}=\frac{1}{2 \pi\left(k_{\text {ins }}\right)_{\text {inner }} l} \ln \frac{r_{3}}{r_{2}}=\frac{1}{2 \pi \times 0.045 \times 1} \times \ln \frac{0.068}{0.058}=0.5625 \mathrm{~K} / \mathrm{W} \\
& \left(R_{\text {ins }}\right)_{\text {outer }}=\frac{1}{2 \pi\left(k_{\text {ins }}\right)_{\text {outer }} l} \ln \frac{r_{4}}{r_{3}}=\frac{1}{2 \pi \times 0.13 \times 1} \times \ln \frac{0.078}{0.068}=0.1679 \mathrm{~K} / \mathrm{W} \\
& R_{\text {outer }}=\frac{1}{h_{\text {outer }} A_{\text {outer }}}=\frac{1}{15 \times 2 \pi \times 0.078 \times 1}=0.136 \mathrm{~K} / \mathrm{W} \\
& \dot{Q}=\frac{T_{\text {inner }}-T_{\text {outer }}}{R_{\text {st }}+\left(R_{\text {ins }}\right)_{\text {inner }}+\left(R_{\text {ins }}\right)_{\text {outer }}+R_{\text {outer }}} \\
& =\frac{165-20}{4.542 \times 10^{-4}+0.5625+0.1679+0.136}=167.27 \mathrm{~W}
\end{aligned}
$$

Therefore, the heat loss per metre length of pipe when covered in two layers of insulation is 167.27 W .
(b)

After removing outer insulation

$R_{\text {outer }}^{\prime}=\frac{1}{h_{\text {outer }} \times A_{\text {outer }}}=\frac{1}{15 \times 2 \pi \times 0.068 \times 1}=0.156 \mathrm{~W}$
P.T.O.

Rate of heat loss without outer insulation

$$
\begin{gathered}
\dot{Q}_{\text {without }}=\frac{T_{\text {inner }}-T_{\text {outer }}}{R_{\text {st }}+\left(R_{\text {ins }}\right)_{\text {inner }}+R_{\text {outer }}^{\prime}}=\frac{165-20}{4.542 \times 10^{-4}+0.5625+0.156} \\
=201.68 \mathrm{~W}
\end{gathered}
$$

Percentage increase in heat loss $=\frac{\dot{Q}_{\text {without }}-\dot{Q}}{\dot{Q}} \times 100=\frac{201.68-167.27}{167.27} \times 100$

$$
=20.57 \%
$$

Therefore, the percentage increase in heat loss when the outer layer is removed is 20.57%.

(c)

With outer insulation

$\dot{Q}=\frac{T_{\text {surface }}-T_{\text {outer }}}{R_{\text {outer }}}$
$\Rightarrow T_{\text {surface }}=\dot{Q} \times R_{\text {outer }}+T_{\text {outer }}=167.27 \times 0.136+20=42.74^{\circ} \mathrm{C}$
(surface temperature with insulation)

Without outer insulation

$\dot{Q}_{\text {without }}=\frac{T_{\text {surface }}^{\prime}-T_{\text {outer }}}{R_{\text {outer }}^{\prime}}$
$\Rightarrow T_{\text {surface }}^{\prime}=\dot{Q}_{\text {without }} \times R_{\text {outer }}^{\prime}+T_{\text {outer }}=201.68 \times 0.156+20=51.46^{\circ} \mathrm{C}$
(Surface temperature without outer insulation)
$\%$ increase in outer surface temperature $=\frac{T_{\text {surface }}-T_{\text {surface }}}{T_{\text {surface }}} \times 100$

$$
=\frac{51.46-42.74}{42.74} \times 100=20.40 \%
$$

Therefore, the percentage increase in outer surface temperature is 20.40%.

Q. 8

A single acting, two stage reciprocating compressor is designed for minimum work with perfect intercooling.
The low pressure cylinder contains a mass of 0.02 kg of air when the piston is at bottom dead centre.
The air is compressed from a pressure and temperature of 0.95 bar and $25^{\circ} \mathrm{C}$ respectively through an overall pressure ratio of 16:1.
The index of expansion and compression in both stages is $\mathbf{1 . 2 8}$.
The clearance volume in each stage is 5% of the respective swept volume and the compressor runs at a speed of $500 \mathrm{rev} / \mathrm{min}$.
(a) Sketch the cycle on a pressure-volume diagram. (2)
(b) Calculate EACH of the following:
(i) the compressor indicated power; (6)
(ii) the heat rejected during the compression process;
(iii) the rate of heat rejection in the intercooler.

Note: for air $\gamma=1.4, c_{p}=1.005 \mathrm{~kJ} / \mathrm{kgK}$ and $\mathrm{R}=0.287 \mathrm{~kJ} / \mathrm{kgK}$
(a)

(b)
$m_{1}=0.02 \mathrm{~kg}$
$P_{1}=0.95 \mathrm{bar}=95 \mathrm{kN} / \mathrm{m}^{2}$
$T_{1}=25^{\circ} \mathrm{C}=298 \mathrm{~K}$
$\frac{P_{3}}{P_{1}}=16$
$n=1.28$
$V_{c}=0.05 V_{s} \quad \Rightarrow \quad \frac{V_{c}}{V_{s}}=0.05$
$N=500 \mathrm{rev} / \mathrm{min}$

$$
\begin{aligned}
& \gamma=1.4, \quad c_{p}=1.005 \mathrm{~kJ} / \mathrm{kgK}, \quad R=0.287 \mathrm{~kJ} / \mathrm{kgK} \\
& c_{v}=c_{p}-R=1.005-0.287=0.718 \mathrm{~kJ} / \mathrm{kgK}
\end{aligned}
$$

$$
P_{1} V_{1}=m_{1} R T_{1} \quad \Rightarrow \quad V_{1}=\frac{m_{1} R T_{1}}{P_{1}}=\frac{0.02 \times 0.287 \times 298}{95}=0.018 \mathrm{~m}^{3}
$$

$$
V_{1}=V_{s}+V_{c}=V_{s}+0.05 V_{s}=1.05 V_{s}
$$

$$
\Rightarrow V_{s}=\frac{V_{1}}{1.05}=\frac{0.018}{1.05}=0.0171 \mathrm{~m}^{3}
$$

$$
\frac{P_{2}}{P_{1}}=\frac{P_{3}}{P_{2}}=\left(\frac{P_{3}}{P_{1}}\right)^{\frac{1}{2}}=16^{\frac{1}{2}}=4 \quad\{\because \text { Minimum work input }
$$

$$
\eta_{v o l}=1+\frac{V_{c}}{V_{s}}\left[1-\left(\frac{P_{2}}{P_{1}}\right)^{1 / n}\right]=1+0.05\left[1-4^{1 / 1.28}\right]=0.9023
$$

$$
\eta_{v o l}=\frac{\dot{m}}{\frac{P_{1}}{R T_{1}} \times V_{s} \times \frac{N}{60}}
$$

$$
\Rightarrow \quad \dot{m}=\eta_{v o l} \times \frac{P_{1}}{R T_{1}} \times V_{s} \times \frac{N}{60}=0.9023 \times \frac{95}{0.287 \times 298} \times 0.0171 \times \frac{500}{60}
$$

$$
=0.1428 \mathrm{~kg} / \mathrm{s}
$$

$$
T_{2}=T_{1} \times\left(\frac{P_{2}}{P_{1}}\right)^{\frac{0.28}{1.28}}=298 \times 4^{0.28 / 1.28}=403.568 \mathrm{~K}
$$

(b)(i)

$$
\begin{gathered}
I P=2 \times \frac{n}{n-1} \times \dot{m} R\left(T_{2}-T_{1}\right)=2 \times \frac{1.28}{0.28} \times 0.1428 \times 0.287 \times(403.568-298) \\
=39.557 \mathrm{~kW}
\end{gathered}
$$

Therefore, the compressor indicated power is 39.557 kW .
P.T.O.
(b)(ii)

From $1^{\text {st }}$ law relation

$$
\begin{aligned}
& Q_{1-2}-W_{1-2}= \\
& \begin{aligned}
& \Rightarrow Q_{1-2}=\Delta U_{1-2} \\
&=0.02 \times 0.718 \times(403.568-298)+\frac{0.02 \times 0.287 \times(298-403.568)}{0.28} \\
&=-0.6482 \mathrm{~kJ}=0.6482 \mathrm{~kJ}(\text { Heat rejction })
\end{aligned}
\end{aligned}
$$

Total heat rejection during compression $=2 \times Q_{1-2}=2 \times 0.6482=1.2964 \mathrm{~kJ}$ Therefore, the heat rejected during compression process is 1.2964 kJ .
(b)(iii)

$$
\begin{aligned}
& \dot{Q}_{i c}=\dot{m} c_{p}\left(T_{2}-T_{2 \prime}\right) \\
& \Rightarrow \quad \dot{Q}_{i c}=\dot{m} c_{p}\left(T_{2}-T_{1}\right) \quad\left\{\because \text { Perfect intercooling } \Rightarrow T_{2^{\prime}}=T_{1}\right. \\
& \Rightarrow \quad \dot{Q}_{i c}=0.1428 \times 1.005 \times(403.568-298)=15.15 \mathrm{~kW}
\end{aligned}
$$

Therefore, the rate of heat rejection in the intercooler is 15.15 kW .
Q. 9

A straight section of horizontal pipe tapers in diameter from $\mathbf{3 0 0} \mathbf{~ m m}$ at inlet to $\mathbf{1 5 0} \mathbf{~ m m}$ at outlet.
The mass flow of fresh water through the pipe is 500 tonne per hour and the pressure at inlet is $\mathbf{3}$ bar.
(a) Calculate EACH of the following:
(i) the fluid velocity at the outlet end;
(ii) the pressure at the outlet end; (5)
(iii) the longitudinal thrust on the pipe. (5)
(b) Sketch a diagram of forces acting on the pipe. (4)

Solution:
(b)

Where,
$R=$ Force on water due to pipe
$F=$ Longitudial thrust on the pipe or force on the pipe due water flow
Here, F and R equal in magnitude and opposite in direction
(a)

$$
\begin{aligned}
& z_{1}=z_{2} \quad\{\because \text { Horizontal pipe } \\
& D_{1}=300 \mathrm{~mm}=0.3 \mathrm{~m}, \quad D_{2}=150 \mathrm{~mm}=0.15 \mathrm{~m} \\
& \dot{m}=500 \text { tonne } / \text { hour }=500 \times \frac{1000}{3600} \mathrm{~kg} / \mathrm{s}=138.889 \mathrm{~kg} / \mathrm{s} \\
& \rho=1000 \mathrm{~kg} / \mathrm{m}^{3} \quad\{\because \text { Fresh water flowing through the pipe } \\
& P_{1}=3 \mathrm{bar}=3 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

(a)(i)

$$
\begin{aligned}
& \dot{m}=A_{2} C_{2} \rho \\
& \Rightarrow \quad C_{2}=\frac{\dot{m}}{A_{2} \rho}=\frac{138.889}{\frac{\pi}{4} \times 0.15^{2} \times 1000}=7.86 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Therefore, the fluid velocity at the outlet end is $7.86 \mathrm{~m} / \mathrm{s}$.
(a)(ii)

$$
\begin{aligned}
& \dot{m}=A_{1} C_{1} \rho \\
& \Rightarrow \quad C_{1}=\frac{\dot{m}}{A_{1} \rho}=\frac{138.889}{\frac{\pi}{4} \times 0.3^{2} \times 1000}=1.965 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

From Bernoulli equation,

$$
\begin{aligned}
& \frac{P_{1}}{\rho g}+\frac{C_{1}{ }^{2}}{2 g}+z_{1}=\frac{P_{2}}{\rho g}+\frac{C_{2}^{2}}{2 g}+z_{2} \\
& \Rightarrow \frac{P_{2}}{\rho g}=\frac{P_{1}}{\rho g}+\frac{C_{1}^{2}}{2 g}-\frac{C_{2}^{2}}{2 g} \quad\left\{\because z_{1}=z_{2}\right. \\
& \Rightarrow P_{2}=P_{1}+\rho \times \frac{C_{1}{ }^{2}-C_{2}^{2}}{2}=3 \times 10^{5}+1000 \times \frac{1.965^{2}-7.86^{2}}{2} \\
& \Rightarrow P_{2}=271040.80 \mathrm{~N} / \mathrm{m}^{2}=2.71 \mathrm{bar}
\end{aligned}
$$

Therefore, the pressure at the outlet end is 2.71 bar.

(a)(iii)

From momentum equation,

$$
\begin{aligned}
& \Sigma F=\dot{m}\left(C_{2}-C_{1}\right) \\
& \Rightarrow P_{1} A_{1}-P_{2} A_{2}-R=\dot{m}\left(C_{2}-C_{1}\right) \\
& \Rightarrow R=P_{1} A_{1}-P_{2} A_{2}-\dot{m}\left(C_{2}-C_{1}\right) \\
& \Rightarrow R=3 \times 10^{5} \times \frac{\pi}{4} \times 0.3^{2}-271040.80 \times \frac{\pi}{4} \times 0.15^{2}-138.889 \times(7.86-1.965) \\
& \Rightarrow R=15597.31 \mathrm{~N} \\
& \therefore F=R=15597.31 \mathrm{~N}
\end{aligned}
$$

Therefore, the longitudinal thrust on the pipe is 15597.31 N .

